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Lecture 4: Open-Set Learning

Sara Beery| 3/4/25
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What's going to
happen?
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Open-set learning

What do you do when you aren't sure about the test
distribution?
e Flag new things (OOD Detection)
e Build systems that can cluster new categories
without supervision (Novel Category Discovery)
e Build systems that can recognize what you trained

on AND cluster new stuff into categories

(Generalized Category Discovery)



OOD detection

Design models that understand what they have and havent seen
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Ulmer et al,, 2020



How does this interact with fine-grained?
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Is this different from anomaly detection?

Inductive

Transductive

Covariate Shift Detection Semantic Shift Detection
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*Exception: In OOD Detection, density-based methods do not require ID classification

It's
complicated..

https://arxiv.org/html/2110.11334v3



The boundaries between OOD tasks can be difficult to parse
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Generalized Out-of-Distribution Detection

Anomaly Detection >
Train
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All Observations are provided

«———— Semantic Anomaly Detection / Novelty Detection ——————>

Train

(d) Open Set Recognition
& Out-of-Distribution Detection”

(e) Outlier Detection

* OOD Detection is generally the same as OSR in classification task, but OOD Detection
(a) Sensory Anomaly Detection  (b) One-Class Novelty Detection (c) Multi-Class Novelty Detection encompasses a broader spectrum of learning tasks and solution space (ref. Section 2.6)

https://arxiv.org/html/2110.11334v3



Beyond OOD: novel category discovery

Labelled training data

Unlabelled data of novel categories Clustering assignment
Han et al, ICCV 2019



Generalized category discovery

Setting: Generalized Category Discovery

Method

(1) Feature extraction with vision transformer
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Input image Image patches Image embedding
(2) Supervised Contrastive (left) & Self-supervised Contrastive (right)
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(3) Semi-supervised K-Means Clustering
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Vaze et al, CVPR 2022



Open-set challenges in ecology
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